Alkylation of o-Cresol with Caryophyllene on Acidic Aluminosilicate Catalysts

V.V.Fomenko, D. V. Korchagina, N.F.Salakhutdinov, and V.A.Barkhash
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, 630090 Russia

Received January 12, 2001

Caryophyllene (\mathbf{I}) is among the most wide-spread and accessible sesquiterpenes. Due to its structural features: a strained trans-substituted double bond in a nine-membered cycle and to a trans-annelated cyclononene and a cyclobutane fragment this substance is one of the most interesting for study polyenes with a medium-sized cycle. The rearrangements of sesquiterpene \mathbf{I} and related compounds are extensively discussed. We did not find any publications (cf. [1]) on alkylation with compound I along Friedel-Crafts procedure. The use on an "organized medium" (clay, zeolites) as catalysts in fine organic synthesis may not only increase the yield of products and selectivity of a reaction but also strongly change the process direction to afford unusual products not available in homogeneous conditions [2].

I
II

We carried out alkylation with diene \mathbf{I} of o-cresol (II) $\left(25^{\circ} \mathrm{C}, 20 \mathrm{~h}\right.$, solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, catalyst zeolite of
β HB-2 type). Compounds III-V were obtained in 8,16 , and 6% yield respectively. On a wide-porous zeolite H-ZSM-12 and on clay K-10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution formed only compound IV in 23 and 37% yield respectively. We formerly by an example of a natural terpene camphene selected solvents that directed the process either to phenol or ether formation [3]. The reaction in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with benzene (1:1 by volume) on β-zeolite resulted in a single product, compound III, in 11% yield.

In formation of an unusual alkylation product \mathbf{V} presumably first arises a bismethylene derivative of caryophyllene VI [1] where cyclization starts by protonation of the $8(13)$ double bond and not the $4(12)$ one; consequently the nucleophile attack is directed to position 4 and not 8 of the alicyclic skeleton.
${ }^{1} \mathrm{H}$ and ${ }^{13}$ NMR spectra were registered on spectrometer Bruker AM-400 at 400.13 and 100.61 MHz respectively from solutions in $\mathrm{CCl}_{4}-\mathrm{CDCl}_{3}$ mixtures ($1: 1$ by volume), internal reference chloroform signal ($\delta_{\mathrm{H}} 7.24, \delta_{\mathrm{C}} 76.90 \mathrm{ppm}$). The structure of newly synthesized compounds was established with the use of double resonance ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR spectra for analysis of geminal, vicinal and long-range coupling
constants, and also with application of ${ }^{13} \mathrm{C}$ NMR spectra. In the latter the signals were assigned with the help of spectra with selective and off-resonance proton irradition, and in some cases with the use of differential spectra modulated with long-range coupling ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ (LRJMD, experimental conditions optimized for the long-range coupling constants of $J_{\mathrm{CH}} 10 \mathrm{~Hz}$). For all the new compounds were also recorded the two-dimensional spectra of ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ heteronuclear correlation (COSY using the value of direct coupling constant ${ }^{1} J_{\mathrm{C}-\mathrm{H}} 134 \mathrm{~Hz}$).

The numeration of atoms on the schemes corresponds to that on the NMR spectra.

Elemental composition of the compounds obtained was established from high-resolution mass spectra measured on Finnigan 8200 instrument, GC-MS spectra were recorded on HP G 1800A device.

4,4,8-Trimethyl-1-o-tolyloxytricyclo $\left[6.3 .1 .0^{2,5}\right]$ dodecane (III). ${ }^{1} \mathrm{H}$ NMR spectrum ($\delta, \mathrm{ppm}, J, \mathrm{~Hz}$): $1.02 \mathrm{~s}\left(\mathrm{C}^{15} \mathrm{H}_{3}\right), 1.10 \mathrm{~s}\left(\mathrm{C}^{14} \mathrm{H}_{3}\right), 1.12 \mathrm{~s}\left(\mathrm{C}^{13} \mathrm{H}_{3}\right), 1.13$ $\mathrm{m}\left(\mathrm{H}^{9}\right), 1.29 \mathrm{~m}$ and $1.67 \mathrm{~m}\left(2 \mathrm{H}^{7}\right), 1.43 \mathrm{~d}\left(\mathrm{H}^{12 a n}\right.$, $\left.J_{12 \mathrm{an}, 12 \mathrm{~s}} 13\right), 1.37-1.53 \mathrm{~m}\left(\mathrm{H}^{6,9^{9}, 11}\right), 1.62 \mathrm{~m}\left(\mathrm{H}^{6^{\prime}}\right)$, 1.75 m and $1.84 \mathrm{~m}\left(2 \mathrm{H}^{10}\right), 1.81$ d.d $\left(\mathrm{H}^{3}, J_{3,3} 10\right.$, $\left.J_{3,2} 8\right), 1.85 \mathrm{~d} . \mathrm{d}\left(\mathrm{H}^{3^{\prime}}, J 10, J_{3^{\prime}, 2} 10\right), 2.04-2.15 \mathrm{~m}$ $\left(\mathrm{H}^{5,11^{\prime}, 12 s}\right), 2.28 \mathrm{~s}\left(\mathrm{C}^{22} \mathrm{H}_{3}\right), 2.46$ d.d.d $\left(\mathrm{H}^{2}, J_{2,5} 12\right.$, $J 10,8), 6.80$ d.d ($\left.\mathrm{H}^{21}, J_{21,20} 8, J_{21,19} 1.2\right), 6.84$ t.d $\left(\mathrm{H}^{19}, J 8,1.2\right), 7.02 \mathrm{t} . \mathrm{d}\left(\mathrm{H}^{20}, J 8, J_{20,18} 1.5\right), 7.12$ br.d (H^{18}, J 8). ${ }^{13} \mathrm{C}$ NMR spectrum (δ_{C}, ppm): $17.48 \mathrm{q}\left(\mathrm{C}^{22}\right), 20.90 \mathrm{t}\left(\mathrm{C}^{10}\right), 21.08 \mathrm{q}\left(\mathrm{C}^{13}\right), 22.91 \mathrm{t}$ $\left(\mathrm{C}^{6}\right), 30.52 \mathrm{q}\left(\mathrm{C}^{14}\right), 33.66 \mathrm{q}\left(\mathrm{C}^{15}\right), 34.53 \mathrm{~s}\left(\mathrm{C}^{4}\right)$, $34.77 \mathrm{~s}\left(\mathrm{C}^{8}\right), 35.38 \mathrm{t}\left(\mathrm{C}^{11}\right), 36.66 \mathrm{t}\left(\mathrm{C}^{9}\right), 38.06 \mathrm{t}$ $\left(\mathrm{C}^{7}\right), 38.14 \mathrm{t}\left(\mathrm{C}^{3}\right), 42.38 \mathrm{~d}\left(\mathrm{C}^{2}\right), 45.77 \mathrm{~d}\left(\mathrm{C}^{5}\right), 47.76$ $\mathrm{t}\left(\mathrm{C}^{12}\right), 80.40 \mathrm{~s}\left(\mathrm{C}^{1}\right), 119.78 \mathrm{~d}\left(\mathrm{C}^{21}\right), 120.87 \mathrm{~d}\left(\mathrm{C}^{19}\right)$, $125.47 \mathrm{~d}\left(\mathrm{C}^{20}\right), 129.94 \mathrm{~s}\left(\mathrm{C}^{17}\right), 130.58 \mathrm{~d}\left(\mathrm{C}^{18}\right)$, $154.12 \mathrm{~s}\left(\mathrm{C}^{16}\right)$. Mass spectrum, $\mathrm{m} / \mathrm{z}(\mathrm{I}, \%): 312$ $\left(M^{+}, 34\right), 205(100), 161$ (14), 149 (76), 135 (53), 123 (66), 121 (45), 109 (69), 95 (80), 81 (78), 69 (55), 67 (34), 55 (40), 41 (41). Found: $M 312.24473$ $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$. Calculated: M 312.24530.

2-Methyl-4-(4,4,8-trimethyltricyclo-[6.3.1.0 $0^{2,5}$]-dodec-1-yl)phenol (IV). ${ }^{1} \mathrm{H}$ NMR spectrum (δ, ppm, $J, \mathrm{~Hz}): 0.56 \mathrm{~d} . \mathrm{d}\left(\mathrm{H}^{3}, J_{3,3} \cdot 10, J_{3,2} 10\right), 0.85 \mathrm{~s}\left(\mathrm{C}^{14} \mathrm{H}_{3}\right)$, $0.99 \mathrm{~s}\left(\mathrm{C}^{15} \mathrm{H}_{3}\right), 1.00 \stackrel{\mathrm{~s}}{ }\left(\mathrm{C}^{13} \mathrm{H}_{3}\right), 1.14$ d.d.d $\left(\mathrm{H}^{9 a}\right.$, $\left.J_{9 \mathrm{a}, 9 \mathrm{e}} 13, J_{9 \mathrm{a}, 10 \mathrm{a}} 13, J_{9 \mathrm{a}, 10 \mathrm{e}} 4.5\right), 1.15 \mathrm{~d}\left(\mathrm{H}^{12 \mathrm{an}}\right.$, $\left.J_{12 \text { an, } 12 \mathrm{~s}} 13\right)$, 1.23 d.d.d ($\left.\mathrm{H}^{7}, J_{7,7^{\prime}} 14, J_{7,6} 7, J_{7,6^{\prime}} 4\right)$, 1.32 d.d.d ($\left.\mathrm{H}^{11 a}, J_{11 \mathrm{a}, 11 \mathrm{e}} 13, J_{11 \mathrm{a}, 10 \mathrm{a}} 13, J_{11 \mathrm{a}, 10 \mathrm{e}} 5\right)$, 1.39 d.d $\left(\mathrm{H}^{3^{\prime}}, J 10, J_{3^{\prime}, 2} 8\right), 1.45 \mathrm{~m}\left(\mathrm{H}^{6}\right), 1.54$ br.d $\left(\mathrm{H}^{9 e}, J 13\right), 1.57 \mathrm{~m}\left(\mathrm{H}^{6^{6}}\right), 1.66 \mathrm{~m}\left(\mathrm{H}^{5}\right), 1.67 \mathrm{~m}$ $\left(\mathrm{H}^{10 e}\right), 1.73$ d.d.d $\left(\mathrm{H}^{7^{\prime}}, J 14, J_{7^{\prime}, 6^{\prime}} 9, J_{7^{\prime}, 6} 4\right)$,
2.00-2.09 m $\left(\mathrm{H}^{10 \mathrm{a}, 11 \mathrm{e}}\right), 2.14$ d.d.d $\left(\mathrm{H}^{12 s}, J 13\right.$, $\left.J_{12 \mathrm{~s}, 9 \mathrm{e}} 2.5, J_{12 \mathrm{~s}, 11 \mathrm{e}} 2.5\right), 2.27 \mathrm{~s}\left(\mathrm{C}^{22} \mathrm{H}_{3}\right), 2.43$ d.d.d $\left(\mathrm{H}^{2}, J_{2,5} 12, J 10,8\right), 5.10$ br.s $(\mathrm{OH}), 6.65 \mathrm{~d}\left(\mathrm{H}^{20}\right.$, $J 8), 6.91$ d.d $\left(\mathrm{H}^{21}, J 8,2\right), 6.96 \mathrm{~d}\left(\mathrm{H}^{17}, J 2\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\delta_{\mathrm{C}}, \mathrm{ppm}\right): 16.21 \mathrm{q}\left(\mathrm{C}^{22}\right), 20.02$ $\mathrm{t}\left(\mathrm{C}^{10}\right), 20.99 \mathrm{q}\left(\mathrm{C}^{13}\right), 22.80 \mathrm{t}\left(\mathrm{C}^{6}\right), 30.52 \mathrm{q}\left(\mathrm{C}^{14}\right)$, $34.06 \mathrm{~s}\left(\mathrm{C}^{4}\right), 34.09 \mathrm{~s}\left(\mathrm{C}^{8}\right), 34.68 \mathrm{q}\left(\mathrm{C}^{15}\right), 37.79 \mathrm{t}$ $\left(\mathrm{C}^{7}\right), 37.88 \mathrm{t}\left(\mathrm{C}^{11}\right), 38.10 \mathrm{t}\left(\mathrm{C}^{9}\right), 39.05 \mathrm{t}\left(\mathrm{C}^{3}\right), 39.70$ $\mathrm{s}\left(\mathrm{C}^{1}\right), 40.56 \mathrm{~d}\left(\mathrm{C}^{2}\right), 45.02 \mathrm{t}\left(\mathrm{C}^{12}\right), 46.12 \mathrm{~d}\left(\mathrm{C}^{5}\right)$, $114.09 \mathrm{~d}\left(\mathrm{C}^{20}\right), 122.43 \mathrm{~s}\left(\mathrm{C}^{18}\right), 124.52 \mathrm{~d}\left(\mathrm{C}^{21}\right)$, $128.68 \mathrm{~d}\left(\mathrm{C}^{17}\right), 141.64 \mathrm{~s}\left(\mathrm{C}^{16}\right), 151.09 \mathrm{~s}\left(\mathrm{C}^{19}\right)$. Mass spectrum, $m / z(I, \%): 312\left(M^{+}, 29\right), 202(16), 201$ (100), 148 (7), 121 (21), 95 (6), 81 (7), 55 (6), 41 (9). Found: $M 312.24504 \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$. Calculated: M 312.24530 .

2-Methyl-4-(1,4,4-trimethyltricyclo-[6.3.1.0 ${ }^{2,5}$]-dodec-8-yl)phenol (\mathbf{V}). ${ }^{1} \mathrm{H}$ NMR spectrum (δ, ppm, $J, \mathrm{~Hz}): 0.87 \mathrm{~s}\left(\mathrm{C}^{15} \mathrm{H}_{3}\right), 1.04 \mathrm{~s}\left(\mathrm{C}^{14} \mathrm{H}_{3}\right), 1.047 \mathrm{~s}$ $\left(\mathrm{C}^{13} \mathrm{H}_{3}\right), 1.053 \mathrm{~d}\left(\mathrm{H}^{12 \mathrm{an}}, J_{12 \mathrm{an}, 12 \mathrm{~s}} 13\right), 1.12 \mathrm{~m}$ and $1.46 \mathrm{~m}\left(2 \mathrm{H}^{11}, 1.38 \mathrm{~d} . \mathrm{d}\left(\mathrm{H}^{3}, J_{3,3} \cdot 10, J_{3,2} 10\right), 1.38\right.$ m and $1.55 \mathrm{~m}\left(2 \mathrm{H}^{6}\right), 1.42 \mathrm{~m}$ and $1.98 \mathrm{~m}\left(2 \mathrm{H}^{9}\right)$, 1.46 m and $1.94 \mathrm{~m}\left(2 \mathrm{H}^{7}\right), 1.54$ d.d $\left(\mathrm{H}^{3^{\prime}}, J 10, J_{3^{\prime}, 2}\right.$ 8), 1.68 m and $2.07 \mathrm{~m}\left(2 \mathrm{H}^{10}\right), 1.87 \mathrm{~m}\left(\mathrm{H}^{5}\right), 2.04 \mathrm{~d} . \mathrm{m}$ $\left(\mathrm{H}^{12 s}, J 13\right), 2.26 \mathrm{~s}\left(\mathrm{C}^{22} \mathrm{H}_{3}\right), 2.37$ d.d.d $\left(\mathrm{H}^{2}, J_{2,5} 12\right.$, $J 10,8), 4.90$ br.s $(\mathrm{OH}), 6.62 \mathrm{~d}\left(\mathrm{H}^{20}, J 8\right), 7.05 \mathrm{~d} . \mathrm{d}$ $\left(\mathrm{H}^{21}, J 8,2\right), 7.10 \mathrm{~d}\left(\mathrm{H}^{17}, J 2\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\delta_{\mathrm{C}}, \mathrm{ppm}\right): 16.19 \mathrm{q}\left(\mathrm{C}^{22}\right), 19.75 \mathrm{t}\left(\mathrm{C}^{10}\right), 21.06 \mathrm{q}$ $\left(\mathrm{C}^{13}\right), 21.84 \mathrm{t}\left(\mathrm{C}^{6}\right), 27.69 \mathrm{q}\left(\mathrm{C}^{15}\right), 30.88 \mathrm{q}\left(\mathrm{C}^{14}\right)$, $32.41 \mathrm{~s}\left(\mathrm{C}^{1}\right), 34.87 \mathrm{~s}\left(\mathrm{C}^{4}\right), 35.95 \mathrm{t}\left(\mathrm{C}^{3}\right), 37.28 \mathrm{t}$ $\left(\mathrm{C}^{9}\right), 37.47 \mathrm{~d}\left(\mathrm{C}^{2}\right), 37.58 \mathrm{t}\left(\mathrm{C}^{11}\right), 37.67 \mathrm{t}\left(\mathrm{C}^{7}\right), 40.12$ s $\left(\mathrm{C}^{8}\right), 44.92 \mathrm{~d}\left(\mathrm{C}^{5}\right), 46.67 \mathrm{t}\left(\mathrm{C}^{12}\right), 114.27 \mathrm{~d}\left(\mathrm{C}^{20}\right)$, $122.68 \mathrm{~s}\left(\mathrm{C}^{18}\right), 123.50 \mathrm{~d}\left(\mathrm{C}^{21}\right), 127.72 \mathrm{~d}\left(\mathrm{C}^{17}\right)$, $146.10 \mathrm{~s}\left(\mathrm{C}^{16}\right), 151.16 \mathrm{~s}\left(\mathrm{C}^{19}\right)$. Mass spectrum, m / z (I, \%): 312 ($M^{+}, 24$), 202 (17), 201 (100), 148 (8), 121 (18), 108 (20), 46 (21), 45 (36), 31 (71). Found: M 312.24497 $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$. Calculated: M 312.24530.

REFERENCES

1. Tkachev, A.V., Khim. Pol. Soes., 1987, no. 4, pp. 475-499; Collado, I.G., Hanson, J.R., and Macias-Sanchez, A.J., Natural Product Reports, 1998, no. 2, pp. 187-204.
2. Salakhutdinov, N.F. and Barkhash, V.A., Chem. Rev., 1998, vol. 23, no. 1, pp. 1-59.
3. Fomenko, V.V., Korchagina, D.V., Salakhutdinov, N.F., Bagryanskaya, I.Yu., Gatilov, Yu.V., Ione, K.G., and Barkhash, V.A., Zh. Org. Khim., 2000, vol. 36, no. 4, pp. 564-575.
